磁力管家
导航切换
首页
热门番号
热门女优
最近搜索
今日热门
一周热门
最新更新
搜索磁力
BT种子名称
[UdemyCourseDownloader] Deep Learning with TensorFlow 2.0 [2019]
分享给好友
更多
亲,你知道吗?下载的人越多速度越快,赶快把本页面分享给好友一起下载吧^_^
BT种子基本信息
种子哈希:
c21e69cf7d6e2cba5fbc345eda84075b7bdbe25a
文档大小:
2.1 GB
文档个数:
299
个文档
下载次数:
7
次
下载速度:
极快
收录时间:
2024-10-31
最近下载:
2025-04-13
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:C21E69CF7D6E2CBA5FBC345EDA84075B7BDBE25A
复制磁力链接到utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
迅雷看看
磁力链接在线播放?试试
百度云网盘离线下载播放
!
文档列表
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4
151.3 MB
01. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4
110.9 MB
13. Business case/4. Preprocessing the data.mp4
96.5 MB
13. Business case/1. Exploring the dataset and identifying predictors.mp4
82.0 MB
13. Business case/9. Setting an early stopping mechanism.mp4
56.0 MB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4
52.2 MB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4
51.8 MB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.mp4
48.2 MB
12. The MNIST example/10. Learning.mp4
46.6 MB
03. Setting up the working environment/9. Installing TensorFlow 2.mp4
45.0 MB
03. Setting up the working environment/2. Why Python and why Jupyter.mp4
43.0 MB
02. Introduction to neural networks/24. N-parameter gradient descent.mp4
41.4 MB
05. TensorFlow - An introduction/1. TensorFlow outline.mp4
40.2 MB
02. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4
40.1 MB
05. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4
40.1 MB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4
39.9 MB
13. Business case/3. Balancing the dataset.mp4
36.9 MB
03. Setting up the working environment/4. Installing Anaconda.mp4
36.6 MB
13. Business case/8. Learning and interpreting the result.mp4
36.3 MB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4
35.5 MB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4
35.2 MB
05. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.mp4
34.4 MB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4
34.2 MB
12. The MNIST example/13. Testing the model.mp4
34.1 MB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.mp4
33.5 MB
12. The MNIST example/8. Outline the model.mp4
32.7 MB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4
28.0 MB
05. TensorFlow - An introduction/2. TensorFlow 2 intro.mp4
26.3 MB
05. TensorFlow - An introduction/7. Cutomizing your model.mp4
25.9 MB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4
25.2 MB
14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4
23.6 MB
03. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4
22.1 MB
04. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4
21.8 MB
12. The MNIST example/2. How to tackle the MNIST.mp4
21.4 MB
13. Business case/6. Load the preprocessed data.mp4
20.3 MB
05. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.mp4
19.4 MB
02. Introduction to neural networks/22. One parameter gradient descent.mp4
18.6 MB
12. The MNIST example/3. Importing the relevant packages and load the data.mp4
18.6 MB
01. Welcome! Course introduction/2. What does the course cover.mp4
17.2 MB
12. The MNIST example/1. The dataset.mp4
16.4 MB
12. The MNIST example/9. Select the loss and the optimizer.mp4
16.0 MB
15. Conclusion/1. See how much you have learned.mp4
14.6 MB
02. Introduction to neural networks/1. Introduction to neural networks.mp4
14.2 MB
06. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4
14.1 MB
02. Introduction to neural networks/5. Types of machine learning.mp4
12.8 MB
13. Business case/11. Testing the model.mp4
12.7 MB
02. Introduction to neural networks/20. Cross-entropy loss.mp4
11.9 MB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4
11.7 MB
06. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4
11.6 MB
08. Overfitting/1. Underfitting and overfitting.mp4
11.6 MB
15. Conclusion/3. An overview of CNNs.mp4
11.5 MB
04. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4
11.2 MB
10. Gradient descent and learning rates/4. Learning rate schedules.mp4
10.8 MB
04. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4
10.2 MB
03. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4
10.0 MB
08. Overfitting/6. Early stopping.mp4
9.9 MB
10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4
9.8 MB
08. Overfitting/3. Training and validation.mp4
9.7 MB
02. Introduction to neural networks/7. The linear model.mp4
9.6 MB
06. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4
9.4 MB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4
9.3 MB
02. Introduction to neural networks/3. Training the model.mp4
9.3 MB
06. Going deeper Introduction to deep neural networks/5. Activation functions.mp4
9.2 MB
11. Preprocessing/1. Preprocessing introduction.mp4
8.8 MB
11. Preprocessing/3. Standardization.mp4
8.7 MB
09. Initialization/1. Initialization - Introduction.mp4
8.4 MB
13. Business case/2. Outlining the business case solution.mp4
8.3 MB
15. Conclusion/6. An overview of non-NN approaches.mp4
8.2 MB
10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4
8.2 MB
02. Introduction to neural networks/10. The linear model. Multiple inputs.mp4
7.9 MB
08. Overfitting/4. Training, validation, and test.mp4
7.8 MB
06. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4
7.7 MB
02. Introduction to neural networks/18. L2-norm loss.mp4
7.6 MB
03. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4
7.5 MB
05. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.mp4
7.5 MB
08. Overfitting/5. N-fold cross validation.mp4
7.3 MB
06. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4
7.2 MB
08. Overfitting/2. Underfitting and overfitting - classification.mp4
7.1 MB
06. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4
7.1 MB
04. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4
6.9 MB
02. Introduction to neural networks/14. Graphical representation.mp4
6.7 MB
15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4
6.6 MB
11. Preprocessing/5. One-hot and binary encoding.mp4
6.5 MB
10. Gradient descent and learning rates/3. Momentum.mp4
6.4 MB
11. Preprocessing/4. Dealing with categorical data.mp4
6.4 MB
09. Initialization/3. Xavier initialization.mp4
6.1 MB
02. Introduction to neural networks/16. The objective function.mp4
6.0 MB
09. Initialization/2. Types of simple initializations.mp4
5.9 MB
15. Conclusion/5. An overview of RNNs.mp4
5.1 MB
06. Going deeper Introduction to deep neural networks/1. Layers.mp4
5.0 MB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4
4.5 MB
11. Preprocessing/2. Basic preprocessing.mp4
3.8 MB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4
3.3 MB
06. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf.pdf
958.9 kB
06. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf.pdf
958.9 kB
02. Introduction to neural networks/1.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/3.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/5.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/7.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/10.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/12.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/14.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/16.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/18.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/20.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/22.1 Course Notes - Section 2.pdf.pdf
949.9 kB
02. Introduction to neural networks/24.1 Course Notes - Section 2.pdf.pdf
949.9 kB
13. Business case/1.1 Audiobooks_data.csv.csv
640.2 kB
13. Business case/4.3 Audiobooks_data.csv.csv
640.2 kB
13. Business case/5.2 Audiobooks_data.csv.csv
640.2 kB
03. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf.pdf
634.0 kB
07. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf
186.7 kB
02. Introduction to neural networks/22.2 GD-function-example.xlsx.xlsx
43.4 kB
13. Business case/4. Preprocessing the data.vtt
11.2 kB
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.vtt
10.6 kB
04. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.vtt
9.7 kB
13. Business case/1. Exploring the dataset and identifying predictors.vtt
9.5 kB
01. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.vtt
9.0 kB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.vtt
8.4 kB
12. The MNIST example/6. Preprocess the data - shuffle and batch the data.vtt
8.3 kB
02. Introduction to neural networks/22. One parameter gradient descent.vtt
7.6 kB
12. The MNIST example/10. Learning.vtt
7.1 kB
13. Business case/9. Setting an early stopping mechanism.vtt
7.1 kB
05. TensorFlow - An introduction/5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.vtt
7.0 kB
02. Introduction to neural networks/24. N-parameter gradient descent.vtt
6.8 kB
12. The MNIST example/8. Outline the model.vtt
6.4 kB
03. Setting up the working environment/9. Installing TensorFlow 2.vtt
6.3 kB
08. Overfitting/6. Early stopping.vtt
6.2 kB
03. Setting up the working environment/6. The Jupyter dashboard - part 2.vtt
6.1 kB
04. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.vtt
6.1 kB
06. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.vtt
6.0 kB
15. Conclusion/3. An overview of CNNs.vtt
5.8 kB
03. Setting up the working environment/2. Why Python and why Jupyter.vtt
5.7 kB
12. The MNIST example/4. Preprocess the data - create a validation dataset and scale the data.vtt
5.7 kB
01. Welcome! Course introduction/2. What does the course cover.vtt
5.6 kB
13. Business case/8. Learning and interpreting the result.vtt
5.6 kB
05. TensorFlow - An introduction/6. Interpreting the result and extracting the weights and bias.vtt
5.6 kB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.vtt
5.4 kB
11. Preprocessing/3. Standardization.vtt
5.4 kB
10. Gradient descent and learning rates/4. Learning rate schedules.vtt
5.4 kB
12. The MNIST example/13. Testing the model.vtt
5.4 kB
02. Introduction to neural networks/1. Introduction to neural networks.vtt
5.3 kB
08. Overfitting/1. Underfitting and overfitting.vtt
5.1 kB
02. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.vtt
4.9 kB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.vtt
4.8 kB
02. Introduction to neural networks/5. Types of machine learning.vtt
4.8 kB
02. Introduction to neural networks/20. Cross-entropy loss.vtt
4.7 kB
05. TensorFlow - An introduction/1. TensorFlow outline.vtt
4.7 kB
15. Conclusion/1. See how much you have learned.vtt
4.7 kB
15. Conclusion/6. An overview of non-NN approaches.vtt
4.7 kB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.vtt
4.7 kB
06. Going deeper Introduction to deep neural networks/5. Activation functions.vtt
4.6 kB
08. Overfitting/3. Training and validation.vtt
4.3 kB
10. Gradient descent and learning rates/1. Stochastic gradient descent.vtt
4.3 kB
11. Preprocessing/5. One-hot and binary encoding.vtt
4.3 kB
13. Business case/6. Load the preprocessed data.vtt
4.2 kB
03. Setting up the working environment/4. Installing Anaconda.vtt
4.1 kB
13. Business case/3. Balancing the dataset.vtt
4.1 kB
04. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.vtt
4.0 kB
04. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.vtt
4.0 kB
06. Going deeper Introduction to deep neural networks/7. Backpropagation.vtt
4.0 kB
02. Introduction to neural networks/3. Training the model.vtt
3.9 kB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.vtt
3.9 kB
06. Going deeper Introduction to deep neural networks/6. Softmax activation.vtt
3.9 kB
08. Overfitting/5. N-fold cross validation.vtt
3.8 kB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.vtt
3.8 kB
05. TensorFlow - An introduction/7. Cutomizing your model.vtt
3.7 kB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.vtt
3.6 kB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.vtt
3.6 kB
02. Introduction to neural networks/7. The linear model.vtt
3.6 kB
06. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.vtt
3.6 kB
11. Preprocessing/1. Preprocessing introduction.vtt
3.5 kB
06. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.vtt
3.4 kB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.vtt
3.4 kB
09. Initialization/3. Xavier initialization.vtt
3.3 kB
15. Conclusion/5. An overview of RNNs.vtt
3.3 kB
09. Initialization/2. Types of simple initializations.vtt
3.3 kB
05. TensorFlow - An introduction/2. TensorFlow 2 intro.vtt
3.3 kB
14. Appendix Linear Algebra Fundamentals/5. Tensors.vtt
3.2 kB
12. The MNIST example/1. The dataset.vtt
3.2 kB
09. Initialization/1. Initialization - Introduction.vtt
3.2 kB
12. The MNIST example/2. How to tackle the MNIST.vtt
3.2 kB
10. Gradient descent and learning rates/3. Momentum.vtt
3.2 kB
08. Overfitting/4. Training, validation, and test.vtt
3.2 kB
05. TensorFlow - An introduction/4. Types of file formats in TensorFlow and data handling.vtt
3.1 kB
10. Gradient descent and learning rates/7. Adaptive moment estimation.vtt
3.0 kB
06. Going deeper Introduction to deep neural networks/2. What is a deep net.vtt
2.9 kB
03. Setting up the working environment/5. The Jupyter dashboard - part 1.vtt
2.8 kB
02. Introduction to neural networks/10. The linear model. Multiple inputs.vtt
2.8 kB
12. The MNIST example/3. Importing the relevant packages and load the data.vtt
2.7 kB
12. The MNIST example/9. Select the loss and the optimizer.vtt
2.7 kB
16. Bonus lecture/1. Bonus lecture Next steps.html
2.6 kB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.vtt
2.6 kB
02. Introduction to neural networks/18. L2-norm loss.vtt
2.5 kB
11. Preprocessing/4. Dealing with categorical data.vtt
2.5 kB
08. Overfitting/2. Underfitting and overfitting - classification.vtt
2.4 kB
02. Introduction to neural networks/14. Graphical representation.vtt
2.4 kB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.vtt
2.3 kB
15. Conclusion/2. What’s further out there in the machine and deep learning world.vtt
2.3 kB
06. Going deeper Introduction to deep neural networks/1. Layers.vtt
2.2 kB
12. The MNIST example/12. MNIST - solutions.html
2.2 kB
12. The MNIST example/11. MNIST - exercises.html
2.0 kB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.vtt
1.9 kB
02. Introduction to neural networks/16. The objective function.vtt
1.9 kB
13. Business case/11. Testing the model.vtt
1.8 kB
13. Business case/2. Outlining the business case solution.vtt
1.8 kB
04. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html
1.6 kB
11. Preprocessing/2. Basic preprocessing.vtt
1.5 kB
15. Conclusion/4. How DeepMind uses deep learning.html
1.4 kB
05. TensorFlow - An introduction/8. Minimal example - Exercises.html
1.4 kB
05. TensorFlow - An introduction/3. A Note on Coding in TensorFlow.vtt
1.2 kB
03. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.vtt
1.2 kB
02. Introduction to neural networks/9. Need Help with Linear Algebra.html
829 Bytes
07. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html
539 Bytes
13. Business case/12. Final exercise.html
445 Bytes
13. Business case/5. Preprocessing exercise.html
404 Bytes
03. Setting up the working environment/11. Installing packages - solution.html
339 Bytes
03. Setting up the working environment/7. Jupyter Shortcuts.html
332 Bytes
03. Setting up the working environment/10. Installing packages - exercise.html
227 Bytes
14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html
220 Bytes
13. Business case/10. Setting an early stopping mechanism - Exercise.html
191 Bytes
14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html
181 Bytes
14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html
178 Bytes
12. The MNIST example/12.1 4. TensorFlow MNIST - Exercise 4 Solution.html
172 Bytes
12. The MNIST example/12.3 5. TensorFlow MNIST - Exercise 5 Solution.html
172 Bytes
13. Business case/7.1 TensorFlow Business Case - Machine Learning - Part 1.html
172 Bytes
13. Business case/8.1 TensorFlow Business Case - Machine Learning - Part 2.html
172 Bytes
13. Business case/9.1 TensorFlow Business Case - Machine Learning - Part 3.html
172 Bytes
14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html
171 Bytes
13. Business case/5.1 TensorFlow Business Case - Preprocessing Exercise Solution.html
167 Bytes
14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html
167 Bytes
13. Business case/11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
13. Business case/12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html
166 Bytes
12. The MNIST example/12.5 8. TensorFlow MNIST - Exercise 8 Solution.html
165 Bytes
12. The MNIST example/12.9 9. TensorFlow MNIST - Exercise 9 Solution.html
165 Bytes
05. TensorFlow - An introduction/7.1 TensorFlow Minimal Example - Complete Code with Comments.html
163 Bytes
13. Business case/4.1 TensorFlow Business Case - Preprocessing with Comments.html
163 Bytes
05. TensorFlow - An introduction/8.3 TensorFlow Minimal Example - Exercise 2_1 - Solution.html
162 Bytes
05. TensorFlow - An introduction/8.5 TensorFlow Minimal Example - Exercise 2_2 - Solution.html
162 Bytes
12. The MNIST example/12.2 7. TensorFlow MNIST - Exercise 7 Solution.html
162 Bytes
12. The MNIST example/12.8 6. TensorFlow MNIST - Exercise 6 Solution.html
162 Bytes
01. Welcome! Course introduction/3. What does the course cover - Quiz.html
161 Bytes
02. Introduction to neural networks/2. Introduction to neural networks - Quiz.html
161 Bytes
02. Introduction to neural networks/4. Training the model - Quiz.html
161 Bytes
02. Introduction to neural networks/6. Types of machine learning - Quiz.html
161 Bytes
02. Introduction to neural networks/8. The linear model - Quiz.html
161 Bytes
02. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html
161 Bytes
02. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html
161 Bytes
02. Introduction to neural networks/15. Graphical representation - Quiz.html
161 Bytes
02. Introduction to neural networks/17. The objective function - Quiz.html
161 Bytes
02. Introduction to neural networks/19. L2-norm loss - Quiz.html
161 Bytes
02. Introduction to neural networks/21. Cross-entropy loss - Quiz.html
161 Bytes
02. Introduction to neural networks/23. One parameter gradient descent - Quiz.html
161 Bytes
02. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html
161 Bytes
03. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html
161 Bytes
03. Setting up the working environment/8. The Jupyter dashboard - Quiz.html
161 Bytes
05. TensorFlow - An introduction/8.1 TensorFlow Minimal Example - Exercise 3 - Solution.html
160 Bytes
05. TensorFlow - An introduction/8.2 TensorFlow Minimal Example - Exercise 1 - Solution.html
160 Bytes
12. The MNIST example/12.10 3. TensorFlow MNIST - Exercise 3 Solution.html
160 Bytes
13. Business case/5.3 TensorFlow Business Case - Preprocessing Exercise.html
158 Bytes
12. The MNIST example/12.7 10. TensorFlow MNIST - Exercise 10 Solution.html
157 Bytes
04. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.d. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_3.b. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_3.a. Solution.html
154 Bytes
04. Minimal example - your first machine learning algorithm/5.10 Minimal_example_Exercise_3.c. Solution.html
154 Bytes
05. TensorFlow - An introduction/8.4 TensorFlow Minimal Example - All Exercises.html
154 Bytes
14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html
154 Bytes
12. The MNIST example/13.1 TensorFlow MNIST - Complete Code with Comments.html
153 Bytes
12. The MNIST example/3.1 TensorFlow MNIST - Part 1 with comments.html
150 Bytes
12. The MNIST example/5.1 TensorFlow MNIST - Part 2 with comments.html
150 Bytes
12. The MNIST example/7.1 TensorFlow MNIST - Part 3 with comments.html
150 Bytes
12. The MNIST example/8.1 TensorFlow MNIST - Part 4 with comments.html
150 Bytes
12. The MNIST example/9.1 TensorFlow MNIST - Part 5 with comments.html
150 Bytes
12. The MNIST example/10.1 TensorFlow MNIST - Part 6 with comments.html
150 Bytes
12. The MNIST example/12.4 1. TensorFlow MNIST - Exercise 1 Solution.html
150 Bytes
12. The MNIST example/12.6 2. TensorFlow MNIST - Exercise 2 Solution.html
150 Bytes
04. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_1_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_5_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_2_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.5 Minimal_example_Exercise_4_Solution.html
149 Bytes
04. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_6_Solution.html
149 Bytes
05. TensorFlow - An introduction/7.2 TensorFlow Minimal Example - Complete Code.html
149 Bytes
13. Business case/4.2 TensorFlow Business Case - Preprocessing.html
149 Bytes
14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html
148 Bytes
05. TensorFlow - An introduction/4.1 TensorFlow Minimal Example - Part 1.html
146 Bytes
05. TensorFlow - An introduction/5.1 TensorFlow Minimal Example - Part 2.html
146 Bytes
05. TensorFlow - An introduction/6.1 TensorFlow Minimal Example - Part 3.html
146 Bytes
04. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html
145 Bytes
12. The MNIST example/11.1 TensorFlow MNIST - All Exercises.html
144 Bytes
04. Minimal example - your first machine learning algorithm/5.1 Minimal_example_All_Exercises.html
143 Bytes
12. The MNIST example/13.2 TensorFlow MNIST - Complete Code.html
139 Bytes
04. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html
136 Bytes
04. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html
136 Bytes
04. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html
136 Bytes
udemycoursedownloader.com.url
132 Bytes
Udemy Course downloader.txt
94 Bytes
12. The MNIST example/5. Preprocess the data - scale the test data.html
81 Bytes
12. The MNIST example/7. Preprocess the data - shuffle and batch the data.html
81 Bytes
13. Business case/7. Load the preprocessed data - Exercise.html
79 Bytes
==查看完整文档列表==
下一个:
[ FreeCourseWeb.com ] New Zealand Listener - 12 - 18 October 2024
84.7 MB
猜你喜欢
[UdemyCourseDownloader] MERN Stack Front To Back Full...
8.8 GB
[UdemyCourseDownloader] Object Oriented programming with Python
1.2 GB
[UdemyCourseDownloader] JavaScript and ES6 Challenges –...
2.5 GB
[UdemyCourseDownloader] Cryptography for Beginners – with openSSL
401.7 MB
[UdemyCourseDownloader] Become a Probability & Statistics Master
1.2 GB
[UdemyCourseDownloader] Learn Photoshop, Web Design &...
5.3 GB
[UdemyCourseDownloader] JavaScript Algorithms and Data...
7.5 GB
[UdemyCourseDownloader] The Data Science Course 2018...
9.9 GB
[UdemyCourseDownloader] C Programming For Beginners -...
2.6 GB
[UdemyCourseDownloader] Photography Masterclass A...
23.5 GB
24小时热门磁力链接
更多 »
Andor [HDTV 720p][Cap.205]
8145次下载
Cap
HDTV
720p
Маня и Груня.2024.WEB-DL 720p.Files-x
5109次下载
2024
WEB
DL
Havoc.2025.1080p.NF.WEB-DL.DDP5.1.Atmos.H.264-EniaHD.mkv
5077次下载
WEB
DL
DDP5
The.Super.Cube.S01E09.1080p.iQ.WEB-DL.AAC2.0.H.264-VARYG.mkv
5040次下载
WEB
DL
Cube
Star.Wars.Andor.S02E05.I.Have.Friends.Everywhere.1080p.DS...
4944次下载
WEB
DL
Star
新桥恋人.电影港 地址发布页 www.dygang.me 收藏不迷路
4365次下载
me
www
发布页
Night at the Museum Battle of the Smithsonian 2009 2160p...
4161次下载
KiNGDOM
WEB
DL
www.UIndex.org - ...
4126次下载
www
MeGusta
HEVC
Palma.2.2024.WEB-DL.1080p.ExKinoRay.mkv
4000次下载
WEB
DL
2.2024
Guns N' Roses - Greatest Hits Live Broadcast Collection...
3915次下载
Live
Remastered
Hits
本周热门磁力链接
更多 »
Andor [HDTV 720p][Cap.205]
8145次下载
Cap
HDTV
720p
(同人CG集) [白色絵の具 (無味ムスミ)] 友達の母が巨乳で金髪の淫乱美女でした.zip
6346次下载
zip
巨乳
CG
You.S05E02.720p.HEVC.x265-MeGusta[EZTVx.to].mkv
6221次下载
S05E02
HEVC
720p
up-mod-minecraft-play-with-friends-v1-21-80-28-...
6023次下载
982108028
mod
play
the.last.of.us.s02e02.1080p.web.h264-successful...
5335次下载
web
last
h264
异世降临.6v电影 地址发布页 www.6v123.net 收藏不迷路
5220次下载
www
发布页
6v123
Opasnaya.blizost.S01.2025.WEB-DL.1080p
5127次下载
WEB
DL
S01
Маня и Груня.2024.WEB-DL 720p.Files-x
5109次下载
2024
WEB
DL
Andor.S02E02.Sagrona.Teema.1080p.HEVC.x265-MeGu...
5100次下载
HEVC
Andor
mkv
Havoc.2025.1080p.NF.WEB-DL.DDP5.1.Atmos.H.264-E...
5077次下载
WEB
DL
DDP5
最新磁力链接
更多 »
Shoot.Paragon.1970.DVDRip.XviD-AFO [NO-RAR] -...
Shoot
www
AFO
DASS-041-U
DASS
041
www.UIndex.org - Andy Richter Controls...
www
Episode
S01E04
[AniDub]_Sora_Kara_Furu_Ichioku_no_Hoshi_[Oriko_Qbiq]
Furu
no
Oriko
[BEST-TORRENTS.COM]...
Cheese
DL
2160p
【成人抖音-黑料-换妻-直播-手机搜7t7a.cc】麻豆传媒映画・爆操黑丝车模小姐姐・超级圆润...
麻豆
小姐姐
车模
Por siempre [HDTV 720p][Cap.106]
siempre
720p
Cap
Workaholics.S04E01.Season.4.Episode.1.WEBRip.72...
Workaholics
Episode
HoC
MobLand.S01E01.1080P.ENG.ITA.H264-TheBlackKing.mkv
ENG
H264
ITA
43606101 - Public Dick Flash Compilation..mp4
Dick
..
Compilation
吃瓜!去欧美留学的林淑瑶 ️被欧美大鸡巴驯化3P大战被洋吊深喉狂艹!
欧美
3P
被洋
Hellraiser III Hell On Earth 1992 1080p BluRay...
5.1
1992
AAC
Ghosts S04E21 Kyle 1080p PMTP WEB-DL DDP5 1 H...
WEB
DL
STC
[Gecko] Araiguma Calcal-dan - S01E07...
WEB
DL
AAC
salamander-2-salamander-deluxe-pack-play-statio...
salamander
play
full
Catalina Cruz live cam show pack
Catalina
show
live
SDMU-534
534
SDMU
dccdom.com@MIDV111C
com
MIDV111C
dccdom
种子标签
UdemyCourseDownloader
Deep
2019
Learning
TensorFlow
2.0
种子评价
优质的种子 (0)
假种子 (0)
有密码 (0)
低质量 (0)
有病毒 (0)
无法下载 (0)
欢迎对种子质量进行评价。
最近搜索
更多 »
怒声
大款
妹佳苗瑠華
睡觉时
每一处
手模
dangerous
高階段
不能不要
弯弯
绿发
裸舞秀
奶獨
热血沸腾
小丁
蛋震動
全带
字符
龙门
泡椒
乘机
simpel
尿尿时
炮友後入
炮美脚
怎样
騷叫
拍藝術
鬼家
芦永玲
人气女优
更多 »
北川ゆい
Akira
COCOLO
Saiko
あいだもも
あさのくるみ
あまいれもん
いしかわ愛里
いとうしいな
うさみ恭香
うちだまひろ
かぐやひめ
かとりこのみ
かないかほ
くすのき琴美
クミコグレース
くらもとまい(葉月ありさ)
さとみ
中村あみ
しいな純菜
しのざきさとみ(三沢亜也)
牧本千幸(つかもと友希)
眞木ありさ
デヴィ
テラ パトリック
ドミニカ
ともさかまい
ともさか愛
なごみもえ
ひなこ
最新番号
更多 »
MARCH-200
CETD-097
SEND-160
ISO-655
UGUG-028
DSE-814
SICP-101
YOGU-002
WNID-003
NATR-264
HHK-019
KICJ-830
TMSG-018
DDN-165
DANDY-038
ADZ-126
ZACK-008
ASFB-195
DUAL-201
VEC-022
ATP-250
VSPDS-464
MDLD-121
AOSBD-007
EMU-007
EMU-033
SDMS-187
DBEB-024
SDMS-471
GOTHIC-015
同时按Ctrl+D可快速添加本站到收藏夹!您也可以保存到
桌面快捷方式
。
分享BT种子/磁力链接
更多
亲,你知道吗?下载的人越多速度越快,赶快把本页面分享给好友一起下载吧^_^