11. Probability - Bayesian Inference/12. A Practical Example of Bayesian Inference.mp4 146.0 MB
12. Probability - Distributions/15. A Practical Example of Probability Distributions.mp4 145.0 MB
16. Statistics - Practical Example Descriptive Statistics/01. Practical Example Descriptive Statistics.mp4 136.9 MB
05. The Field of Data Science - Popular Data Science Techniques/01. Techniques for Working with Traditional Data.mp4 112.4 MB
42. Part 6 Mathematics/11. Why is Linear Algebra Useful.mp4 92.8 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/01. Practical Example Linear Regression (Part 1).mp4 88.9 MB
03. The Field of Data Science - Connecting the Data Science Disciplines/01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 87.6 MB
06. The Field of Data Science - Popular Data Science Tools/01. Necessary Programming Languages and Software Used in Data Science.mp4 86.4 MB
10. Probability - Combinatorics/11. A Practical Example of Combinatorics.mp4 84.6 MB
05. The Field of Data Science - Popular Data Science Techniques/07. Techniques for Working with Traditional Methods.mp4 79.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/04. Business Case Preprocessing.mp4 78.0 MB
53. Deep Learning - Business Case Example/04. Business Case Preprocessing the Data.mp4 77.4 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4 73.1 MB
05. The Field of Data Science - Popular Data Science Techniques/10. Types of Machine Learning.mp4 72.8 MB
19. Statistics - Practical Example Inferential Statistics/01. Practical Example Inferential Statistics.mp4 72.4 MB
05. The Field of Data Science - Popular Data Science Techniques/03. Techniques for Working with Big Data.mp4 65.1 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/01. Business Case Getting Acquainted with the Dataset.mp4 63.2 MB
58. Software Integration/02. What are Data Connectivity, APIs, and Endpoints.mp4 63.1 MB
08. The Field of Data Science - Debunking Common Misconceptions/01. Debunking Common Misconceptions.mp4 61.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/06. Creating a Data Provider.mp4 59.0 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/03. Checking the Content of the Data Set.mp4 56.6 MB
05. The Field of Data Science - Popular Data Science Techniques/05. Business Intelligence (BI) Techniques.mp4 55.5 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/03. Simple Linear Regression with sklearn.mp4 28.8 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/08. A3 Normality and Homoscedasticity.mp4 28.7 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4 28.7 MB
46. Deep Learning - TensorFlow 2.0 Introduction/01. How to Install TensorFlow 2.0.mp4 28.7 MB
05. The Field of Data Science - Popular Data Science Techniques/11. Evolution and Latest Trends of Machine Learning (ML).mp4 28.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/03. The Importance of Working with a Balanced Dataset.mp4 28.6 MB
40. ChatGPT for Data Science/08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4 28.5 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4 28.3 MB
46. Deep Learning - TensorFlow 2.0 Introduction/06. Outlining the Model with TensorFlow 2.mp4 28.3 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/07. Creating a Summary Table with the Coefficients and Intercept.mp4 28.3 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/08. Business Case Optimization.mp4 28.2 MB
38. Advanced Statistical Methods - K-Means Clustering/06. How to Choose the Number of Clusters.mp4 28.2 MB
40. ChatGPT for Data Science/01. Traditional data science methods and the role of ChatGPT.mp4 27.4 MB
46. Deep Learning - TensorFlow 2.0 Introduction/07. Interpreting the Result and Extracting the Weights and Bias.mp4 27.2 MB
09. Part 2 Probability/04. Events and Their Complements.mp4 27.1 MB
64. Appendix - Additional Python Tools/01. Using the .format() Method.mp4 26.9 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. Dealing with Categorical Data - Dummy Variables.mp4 23.7 MB
52. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.mp4 23.7 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/04. Non-Linearities and their Purpose.mp4 23.6 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/10. What is the OLS.mp4 23.6 MB
53. Deep Learning - Business Case Example/03. Business Case Balancing the Dataset.mp4 23.4 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 23.4 MB
42. Part 6 Mathematics/06. Addition and Subtraction of Matrices.mp4 23.2 MB
52. Deep Learning - Classifying on the MNIST Dataset/08. MNIST Outline the Model.mp4 23.1 MB
36. Advanced Statistical Methods - Logistic Regression/02. A Simple Example in Python.mp4 22.9 MB
40. ChatGPT for Data Science/06. Analyzing a client database with ChatGPT in Python.mp4 22.7 MB
40. ChatGPT for Data Science/09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4 22.6 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4 19.8 MB
22. Part 4 Introduction to Python/04. Installing Python and Jupyter.mp4 19.7 MB
39. Advanced Statistical Methods - Other Types of Clustering/02. Dendrogram.mp4 19.2 MB
10. Probability - Combinatorics/05. Solving Variations without Repetition.mp4 19.1 MB
28. Python - Sequences/04. Tuples.mp4 19.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/04. Introduction to Terms with Multiple Meanings.mp4 18.9 MB
40. ChatGPT for Data Science/17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4 18.7 MB
65. Appendix - pandas Fundamentals/09. Introduction to pandas DataFrames - Part II.mp4 18.7 MB
15. Statistics - Descriptive Statistics/05. Numerical Variables - Frequency Distribution Table.mp4 18.6 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 18.5 MB
11. Probability - Bayesian Inference/01. Sets and Events.mp4 18.5 MB
58. Software Integration/04. Communication between Software Products through Text Files.mp4 18.4 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 18.4 MB
10. Probability - Combinatorics/02. Permutations and How to Use Them.mp4 18.4 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4 18.2 MB
29. Python - Iterations/04. Conditional Statements and Loops.mp4 18.2 MB
40. ChatGPT for Data Science/16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4 18.1 MB
17. Statistics - Inferential Statistics Fundamentals/02. What is a Distribution.mp4 18.0 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/09. Basic NN Example with TF Model Output.mp4 17.9 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/08. Calculating the Adjusted R-Squared in sklearn.mp4 17.7 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 17.7 MB
44. Deep Learning - Introduction to Neural Networks/12. Optimization Algorithm n-Parameter Gradient Descent.mp4 17.7 MB
46. Deep Learning - TensorFlow 2.0 Introduction/08. Customizing a TensorFlow 2 Model.mp4 17.6 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/04. Practical Example Linear Regression (Part 3).mp4 17.5 MB
44. Deep Learning - Introduction to Neural Networks/06. The Linear model with Multiple Inputs and Multiple Outputs.mp4 17.4 MB
63. Case Study - Analyzing the Predicted Outputs in Tableau/06. Analyzing Transportation Expense vs Probability in Tableau.mp4 17.3 MB
10. Probability - Combinatorics/09. Combinatorics in Real-Life The Lottery.mp4 17.2 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. Making Predictions with the Linear Regression.mp4 17.1 MB
12. Probability - Distributions/14. Continuous Distributions The Logistic Distribution.mp4 17.0 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/08. Reg Ex for Analyzing Text Review Data.mp4 17.0 MB
54. Deep Learning - Conclusion/06. An Overview of non-NN Approaches.mp4 16.9 MB
29. Python - Iterations/03. Lists with the range() Function.mp4 16.8 MB
02. The Field of Data Science - The Various Data Science Disciplines/03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 15.3 MB
40. ChatGPT for Data Science/12. Hypothesis testing with ChatGPT.mp4 15.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4 15.0 MB
13. Probability - Probability in Other Fields/03. Probability in Data Science.mp4 14.9 MB
26. Python - Conditional Statements/03. The ELIF Statement.mp4 14.9 MB
42. Part 6 Mathematics/08. Transpose of a Matrix.mp4 14.9 MB
11. Probability - Bayesian Inference/08. The Law of Total Probability.mp4 14.9 MB
48. Deep Learning - Overfitting/02. Underfitting and Overfitting for Classification.mp4 14.7 MB
10. Probability - Combinatorics/04. Solving Variations with Repetition.mp4 14.6 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4 14.5 MB
53. Deep Learning - Business Case Example/06. Business Case Load the Preprocessed Data.mp4 14.5 MB
10. Probability - Combinatorics/07. Symmetry of Combinations.mp4 14.4 MB
42. Part 6 Mathematics/03. Linear Algebra and Geometry.mp4 14.4 MB
24. Python - Basic Python Syntax/03. How to Reassign Values.mp4 2.0 MB
19. Statistics - Practical Example Inferential Statistics/assets/02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx 1.9 MB
19. Statistics - Practical Example Inferential Statistics/assets/01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx 1.8 MB
19. Statistics - Practical Example Inferential Statistics/assets/02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx 1.8 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/assets/12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb 1.8 MB
10. Probability - Combinatorics/assets/06. Combinations-With-Repetition.pdf 212.4 kB
13. Probability - Probability in Other Fields/assets/01. Probability-in-Finance-Solutions.pdf 188.9 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/assets/09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 186.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb 175.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb 170.9 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.7 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb 14.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb 14.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb 14.6 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb 14.3 kB
19. Statistics - Practical Example Inferential Statistics/01. Practical Example Inferential Statistics.vtt 14.2 kB
02. The Field of Data Science - The Various Data Science Disciplines/03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.9 kB
03. The Field of Data Science - Connecting the Data Science Disciplines/01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 9.5 kB
12. Probability - Distributions/08. Characteristics of Continuous Distributions.vtt 9.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt 6.9 kB
20. Statistics - Hypothesis Testing/10. Test for the Mean. Dependent Samples.vtt 6.9 kB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.vtt 6.9 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/12. TensorFlow-MNIST-complete.ipynb 6.9 kB
29. Python - Iterations/01. For Loops.vtt 6.9 kB
46. Deep Learning - TensorFlow 2.0 Introduction/07. Interpreting the Result and Extracting the Weights and Bias.vtt 6.9 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt 6.9 kB
64. Appendix - Additional Python Tools/02. Iterating Over Range Objects.vtt 6.6 kB
40. ChatGPT for Data Science/04. Data Preprocessing with ChatGPT.vtt 6.6 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/05. TensorFlow-MNIST-Part2-with-comments.ipynb 6.5 kB
40. ChatGPT for Data Science/05. First attempt at machine learning with ChatGPT.vtt 6.5 kB
54. Deep Learning - Conclusion/04. An overview of CNNs.vtt 6.5 kB
40. ChatGPT for Data Science/17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt 6.5 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/07. Creating a Summary Table with the Coefficients and Intercept.vtt 6.5 kB
15. Statistics - Descriptive Statistics/17. Standard Deviation and Coefficient of Variation.vtt 6.5 kB
53. Deep Learning - Business Case Example/08. Business Case Learning and Interpreting the Result.vtt 6.5 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/08. How to Interpret the Regression Table.vtt 6.5 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 6.5 kB
58. Software Integration/01. What are Data, Servers, Clients, Requests, and Responses.vtt 6.4 kB
20. Statistics - Hypothesis Testing/14. Test for the mean. Independent Samples (Part 2).vtt 5.5 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt 5.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.vtt 5.5 kB
44. Deep Learning - Introduction to Neural Networks/10. Common Objective Functions Cross-Entropy Loss.vtt 5.5 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.vtt 5.5 kB
05. The Field of Data Science - Popular Data Science Techniques/08. Real Life Examples of Traditional Methods.vtt 5.5 kB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.vtt 5.4 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/05. Activation Functions.vtt 5.4 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 5.4 kB
12. Probability - Distributions/05. Discrete Distributions The Bernoulli Distribution.vtt 5.3 kB
17. Statistics - Inferential Statistics Fundamentals/03. The Normal Distribution.vtt 5.3 kB
40. ChatGPT for Data Science/06. Analyzing a client database with ChatGPT in Python.vtt 5.3 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.vtt 5.3 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/05. EXERCISE - Transportation Expense vs Probability.html 553 Bytes
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/09. Backpropagation - A Peek into the Mathematics of Optimization.html 543 Bytes