16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 168.2 MB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.mp4 165.5 MB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.mp4 152.2 MB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.mp4 151.3 MB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 145.0 MB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.mp4 140.8 MB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 133.0 MB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 131.2 MB
56. Software Integration/5. Taking a Closer Look at APIs.mp4 121.2 MB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 117.1 MB
2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 114.3 MB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4 109.1 MB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 108.6 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.mp4 108.4 MB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 107.6 MB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 104.1 MB
13. Probability - Probability in Other Fields/1. Probability in Finance.mp4 103.9 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/1. Practical Example Linear Regression (Part 1).mp4 101.8 MB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4 96.5 MB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 94.3 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting Acquainted with the Dataset.mp4 91.9 MB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 72.9 MB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4 72.4 MB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.mp4 72.2 MB
2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 71.0 MB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.mp4 69.5 MB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 67.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4 33.6 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/14. A4 No Autocorrelation.mp4 33.0 MB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.mp4 32.7 MB
41. Part 7 Deep Learning/1. What to Expect from this Part.mp4 32.6 MB
46. Deep Learning - Overfitting/1. What is Overfitting.mp4 32.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/8. Calculating the Adjusted R-Squared in sklearn.mp4 32.4 MB
28. Python - Sequences/5. List Slicing.mp4 32.3 MB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 32.1 MB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 30.5 MB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 30.5 MB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4 30.5 MB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 30.3 MB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf 958.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf 958.9 kB
11. Probability - Bayesian Inference/22.1 CDS_2017-2018 Hamilton.pdf 865.6 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/8.1 sklearn - Linear Regression - Practical Example (Part 5)_with_comments.ipynb 728.1 kB
51. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1.1 Audiobooks_data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.3 Audiobooks_data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.2 Audiobooks_data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3.1 Audiobooks-data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.1 Audiobooks_data.csv 727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.2 Audiobooks_data.csv 727.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/8.3 sklearn - Linear Regression - Practical Example (Part 5).ipynb 715.1 kB
12. Probability - Distributions/1.1 Course Notes - Probability Distributions.pdf 475.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/6.3 sklearn - Linear Regression - Practical Example (Part 4)_with_comments.ipynb 417.4 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/6.2 sklearn - Linear Regression - Practical Example (Part 4).ipynb 406.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/5.2 sklearn - Dummies and VIF - Exercise Solution.ipynb 379.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/4.2 sklearn - Linear Regression - Practical Example (Part 3)_with_comments.ipynb 359.9 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/5.3 sklearn - Dummies and VIF - Exercise.ipynb 352.9 kB
12. Probability - Distributions/15.1 Solving Integrals.pdf 352.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/4.1 sklearn - Linear Regression - Practical Example (Part 3).ipynb 351.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/2.1 sklearn - Linear Regression - Practical Example (Part 2)_with_comments.ipynb 343.7 kB
10. Probability - Combinatorics/11.1 Combinations With Repetition.pdf 212.4 kB
13. Probability - Probability in Other Fields/1.2 Probability in Finance Solutions.pdf 188.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf 186.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/1.2 sklearn - Linear Regression - Practical Example (Part 1)_with_comments.ipynb 175.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/1.3 sklearn - Linear Regression - Practical Example (Part 1).ipynb 170.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/16.3 sklearn - Making Predictions with the Standardized Coefficients_with_comments.ipynb 22.6 kB
17. Statistics - Inferential Statistics Fundamentals/2.1 3.2. What is a distribution_lesson.xlsx 19.9 kB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.srt 19.8 kB
15. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx 19.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/19.2 Multiple Linear Regression with Dummies Exercise Solution.ipynb 18.4 kB
39. Advanced Statistical Methods - Other Types of Clustering/3.2 Heatmaps_with_comments.ipynb 18.1 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11.8 TensorFlow_MNIST_around_98_percent_accuracy.ipynb 18.1 kB
38. Advanced Statistical Methods - K-Means Clustering/15.1 Species Segmentation with Cluster Analysis Part 2 - Exercise.ipynb 11.0 kB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.srt 10.9 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8.2 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb 10.9 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9.1 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb 10.9 kB
2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.srt 10.9 kB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.srt 10.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/10.2 sklearn - Feature Selection with F-regression.ipynb 10.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/8.2 sklearn - Multiple Linear Regression and Adjusted R-squared_with_comments.ipynb 10.7 kB
56. Software Integration/5. Taking a Closer Look at APIs.srt 10.6 kB
17. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx 10.6 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7.1 TensorFlow_Audiobooks_Outlining_the_model_with_comments.ipynb 10.6 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/8.1 sklearn - Multiple Linear Regression and Adjusted R-squared.ipynb 9.3 kB
54. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/4. MNIST Model Outline.srt 9.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/6.1 TensorFlow_Minimal_example_Part2.ipynb 9.3 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/19.2 sklearn - Train Test Split_with_comments.ipynb 9.3 kB
3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt 9.2 kB
9. Part 2 Probability/1. The Basic Probability Formula.srt 9.1 kB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.srt 9.1 kB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.srt 8.9 kB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.srt 8.9 kB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.srt 8.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/7.2 sklearn - Multiple Linear Regression_with_comments.ipynb 8.9 kB
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.srt 6.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt 6.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/17.3 sklearn - Feature Scaling Exercise.ipynb 6.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/3.1 sklearn - Simple Linear Regression_with_comments.ipynb 6.2 kB
62. Appendix - Additional Python Tools/2. Iterating Over Range Objects.srt 6.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.srt 6.2 kB
49. Deep Learning - Preprocessing/3. Standardization.srt 6.1 kB
15. Statistics - Descriptive Statistics/1. Types of Data.srt 6.1 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt 6.1 kB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.srt 6.1 kB
29. Python - Iterations/3. While Loops and Incrementing.srt 6.0 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/5. What's Regression Analysis - a Quick Refresher.html 2.9 kB
48. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.srt 2.9 kB
28. Python - Sequences/3.2 Help Yourself with Methods - Solution_Py3.ipynb 2.9 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/3.2 Multiple linear regression and Adjusted R-squared_with_comments.ipynb 2.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.srt 2.9 kB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.srt 2.9 kB
28. Python - Sequences/5.2 List Slicing - Exercise_Py3.ipynb 2.9 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/9.3 Simple Linear Regression Exercise.ipynb 2.8 kB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.srt 2.8 kB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.srt 2.8 kB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.srt 2.8 kB
11. Probability - Bayesian Inference/16. The Additive Rule.srt 2.8 kB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.srt 2.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.srt 2.8 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/5. EXERCISE - Transportation Expense vs Probability.html 553 Bytes
45. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html 539 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html 165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so Many.html 165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html 165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html 165 Bytes
2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html 165 Bytes
29. Python - Iterations/2. For Loops.html 165 Bytes
29. Python - Iterations/5. Lists with the range() Function.html 165 Bytes
3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 165 Bytes